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Direct numerical simulation results are presented for turbulent channel flows with
two-dimensional roughness elements of different shapes. The focus is mainly on
a geometry where the separation between consecutive roughness elements is small
and for which the rate of change of the roughness function with respect to the
separation between consecutive elements is large. Roughness elements are placed
either along the flow direction or orthogonally to it. In the latter case, the drag is
increased. For the former case, the possibility of drag reduction reflects the different
relative contributions from viscous and Reynolds shear stresses. The Reynolds shear
stress depends on the shape of the surface more than the viscous stress and is
closely related to the near-wall structures. For orthogonal elements, there is no
satisfactory correlation between the roughness function and parameters describing
the roughness geometry. On the other hand, a satisfactory collapse of the data
is achieved when the roughness function is plotted against the root mean square
wall-normal velocity averaged over the plane of the roughness crests. Relative to
a smooth wall surface, the Reynolds stress tensor near the wall tends to become
more isotropic when the elements are orthogonal to the flow and less isotropic when
the elements are aligned with the flow. The interdependencies between the departure
from isotropy in the wall region, the organization of the wall structures, and the
magnitude of the drag are assessed by examining the rotational component of the
turbulent kinetic energy production and the probability density function of the helicity
density.

1. Introduction
The effect of roughness may be thought to cause, in a broad sense, either an

increase or a reduction in drag. The former case is usually associated with either
three-dimensional or transverse two-dimensional roughness elements, while the latter
is generally achieved with the use of riblets (elements aligned to the flow). Nikuradse
(1933) was the first to investigate the Reynolds-number dependence of the drag for
flows over a uniform sand grain roughness. Clauser (1954) showed that the effect of
the roughness was to shift the velocity distribution in the log-region according to

U+ = κ−1 ln(y+) + B − �U+ , (1.1)

where κ is the Kármán constant, B is a constant (equal to about 5.5 for channel
flows) and �U+ is the so-called roughness function (+ denotes normalization by
wall variables, i.e. the frictional velocity Uτ and the kinematic viscosity ν) which
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can depend on various characteristics of the roughness. Because of the wide range
of roughnesses encountered in nature, it is difficult to define geometrical parameters
which can represent all types of surface adequately. For many rough surfaces, �U+

depends on k+, where k is the height of the elements. Indeed, for sand grain roughness,
a good fit to the data is provided by �U+ = ln(1 + 0.3k+

s ) (ks is a typical length related
to the sand grain size). For a two-dimensional roughness, a similar behaviour has
been found, namely �U+ = κ−1 ln k+ + C, where C depends on the type of surface
and roughness density. For a particular rough surface, usually referred to as ‘d-type’
(Perry, Schofield & Joubert 1969), �U+ is not supposed to depend on k+. Instead,
the dependence is on d+, where d represents either the diameter of the pipe, the
thickness of the boundary layer or the half-width of a duct. To our knowledge, this
dependence has yet to be confirmed. Using direct numerical simulations (DNSs),
Leonardi et al. (2003a) showed that for transverse two-dimensional square elements,
the maximum value of �U+ occurred for w/k = 7, where w is the streamwise width
of the cavity between consecutive elements. The DNS allows both the viscous drag
and form drag to be estimated reliably. By averaging over one wavelength, the form
drag is maximum whilst the viscous drag is negligible for w/k = 7. The experimental
results of Furuya, Miyata & Fujita (1976) for circular rods also indicated that �U+

is maximum for w/k = 7. For small values of w/k (Leonardi et al. 2003b), there are
large differences in �U+ between rods and square bars, implying that it would be
difficult, if not impossible, to find a dependence of �U+ on geometrical parameters
which would account for all rough surfaces. Orlandi et al. (2003) showed that using
a non-zero wall-normal velocity as a boundary condition allowed the main effects of
the roughness on the outer flow to be reproduced satisfactorily. It was consequently
speculated that 〈u′2

2 〉 could provide a better way of parameterizing the roughness (a
prime indicates a velocity fluctuation, angule brackets denote averaging with respect
to time as well as streamwise and spanwise directions). This speculation is tested
in the present paper by carrying out DNSs of turbulent channel flows with square,
circular and triangular two-dimensional elements placed on the bottom wall along
the spanwise direction.

A different kind of roughness, aligned to the flow direction, may produce a drag
reduction. Beckert & Bartenwerfer (1989) reproduced shark skins in the laboratory
and demonstrated that drag reduction could be achieved. Choi, Moin & Kim (1993)
performed a DNS of the flow above triangular riblets. They pointed out that drag
reduction is obtained when the streamwise vortices cannot penetrate the space between
the riblets. Since the turbulence-producing eddies have a diameter of approximately
20 wall units, they can reach the lateral walls if the lateral separation between riblets
is larger than this distance and a drag increase results. Although the eddies produce
a local increase in skin friction near the tip of riblets with dimension S+ = 15 (S is
the height of the riblets), the skin friction is reduced over most of the surface.

Other DNSs considered the flow over triangular riblets. Goldstein, Handler &
Sirovich (1995) emphasized the role of the lateral motion of the turbulence producing
eddies and showed that the edges of the riblets have the further beneficial effect
of preventing undulations of the near-wall vortical structures, thus providing further
insight into the drag-reduction mechanism. The formation of intense vortex structures
near the edges of riblets increases the energy dissipation rate and leads to a smaller
root mean square (r.m.s.) velocity. Chu & Karniadakis (1993) found that a local flow
reversal occurs within the riblet valleys. However, this is not relevant to the mechanism
of drag reduction and was not observed in the two previously mentioned simulations.
As for the laboratory experiments of Vukoslavcevic, Wallace & Balint (1992), the
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mean velocity and Reynolds shear stress profiles were evaluated at three different
lateral positions between riblets. Above both the valleys and peaks, there was a
reduction relative to the smooth wall channel of the peak r.m.s. value, normalized by
the local friction velocity, for both lateral and wall-normal velocity components. The
longitudinal Reynolds stress was not reduced, but the location of the peak magnitude
of all three normal stresses was shifted well away from the wall.

The present paper represents a first attempt at providing a unified description of
the effect that these two different types of roughness may have on the flow. The
riblets are treated as a rough surface and, as in the case of the transverse elements,
the statistics are evaluated only in the region above the plane of the crests. In contrast
to Choi et al. (1993), we do not use a virtual origin for longitudinal elements. Note
that previous DNSs have dealt only with riblets of triangular shape, because these
are supposedly the most efficient (Walsh 1990). Here, riblets of circular and square
cross-sections are also examined. Since our interest is not in maximizing the drag-
reduction, but in comparing drag-reducing and drag-increasing geometries, the same
shape and value of w/k are kept for the two types of roughness. We consider circular,
square and triangular bars with w/k = 1, for which the drag is close to that for a
smooth-wall channel.

The mean turbulent kinetic energy production and dissipation rates vary for the
two different types of disturbance, owing to changes in the flow structures. To
understand whether this variation is caused by large or small scales, profiles of
statistics contributing to the energy production are investigated. In order to have a
better appreciation of the production mechanism, the energy production term, which
is usually written as the product of the Reynolds shear stress and mean velocity
gradient, can be expressed in a different way via velocity–vorticity correlations, as
suggested by Hinze (1975). The Joint probability density functions (JPDFs) of these
correlations are associated with ejection and sweep events, which makes it possible
to assess how the structures are modified by different types of roughness. The trace
of the velocity–vorticity correlation tensor is linked to the helicity density, which
has previously been used by Rogers & Moin (1987) to highlight departures from
isotropy near the wall. This quantity can therefore supplement two-point correlations
and anisotropy invariant maps (Leonardi et al. 2004) for quantifying departures from
isotropy caused by the roughness.

2. Numerical procedure
Several DNSs of flows over irregular walls have been performed. To represent

the roughness numerically, two methods can be adopted. One is to use a coordinate
transformation where a coordinate line coincides with the wall surface, e.g. Choi et al.
(1993). This method requires a large amount of computational time and can be
applied only to certain simple surfaces. Since the coordinate is obtained via conformal
transformations, this type of study is restricted to certain surfaces (Orlandi 1989). For
example, this method cannot handle the flow above circular shaped riblets. Another
method is to represent roughness elements by an immersed boundary method as in
Goldstein et al. (1995) and Bhaganagar, Kim & Coleman (2004). This method can
handle the flow above any kind of surface, albeit by clustering a larger number of
points near the elements.

Since the aim of our paper is to compare roughness elements which are either
aligned or placed transversely to the flow direction, the latter method is employed.
Details of how to solve the Navier–Stokes equations in a rectangular grid with
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non-uniform spacing in the non-homogeneous direction and uniform spacing in the
homogeneous directions can be found in Orlandi (2000). The immersed boundary
method in this numerical scheme is described in Fadlun et al. (2000); here, only the
main features are recalled. The incompressible non-dimensional Navier–Stokes and
continuity equations are

∂Ui

∂t
+

∂UiUj

∂xj

= − ∂P

∂xi

+ Πδi1 +
1

Re

∂2Ui

∂x2
j

,
∂Ui

∂xi

= 0, (2.1)

where Re =(Uch/ν) is the Reynolds number, Uc is the centreline laminar Poiseuille
velocity, h is the channel half-width, Π is the pressure gradient required to maintain
a constant flow rate, Ui is the component of the velocity vector in the i direction, P

is the pressure, x1, x2 and x3 are the streamwise, wall-normal and spanwise directions,
respectively. To understand why Uc is considered as a reference velocity for turbulent
flows, we would like to recall that the simulations start from a laminar flow at
Re = 4200 with a strong random disturbance of zero mean; since the flow rate is
constant, the bulk velocity Ub is equal to 0.66Uc. The Navier–Stokes equations have
been discretized in an orthogonal coordinate system using a staggered central second-
order finite-difference approximation. In the inviscid case with free-slip conditions,
energy is conserved. The discretized system is advanced in time using a fractional-step
method with viscous terms treated implicitly and convective terms explicitly. The
large sparse matrix resulting from the implicit terms is inverted by performing fast
Fourier transforms (FFTs) in the homogeneous directions and applying tridiagonal
solvers in the non-homogeneous directions. The reduced wavenumber is used instead
of the real wavenumber in order to maintain second-order accuracy of staggered
finite differences.

At each time step, the momentum equations are advanced using the pressure at the
previous step, yielding an intermediate non-solenoidal velocity field. A scalar quantity
Φ projects the non-solenoidal field onto a solenoidal one. A hybrid low-storage
third-order Runge–Kutta scheme is used to advance the equations in time.

The immersed boundary method, used here to describe roughness elements, is
similar to that described by Fadlun et al. (2000). This procedure has been applied to a
large number of flows, as described in the review of Iaccarino & Verzicco (2003). As in
Fadlun et al. (2000), the present method assumes that the velocities are zero inside the
body. However, in Fadlun et al. (2000), the velocity at the first point outside the body
is calculated by a linear interpolation with the velocity at the second point outside
the body. Here, at the first point outside the roughness element, the discretization
of the viscous derivatives in the Navier–Stokes equation is done by taking into
account the real distance between the grid point and the walls. To be more specific,
the same procedure as for the smooth wall channel is used, but here the metrics
vary and depend on the type of surface; near the solid boundary, the scheme is only
first-order accurate. This does not disrupt the flow since the flow physics implies that
very near a solid boundary, the velocity tends to zero linearly. At a later stage, the
accuracy of the method will be ascertained by comparison with experimental results.
This treatment of the flow is rather similar to that of Ye et al. (1999) except that the
metrics of the Φ equation are not corrected because the impermeability condition is
sufficient for obtaining the correct pressure distribution on the surface of the body.

The constancy of the grid allows the use of FFTs in the homogeneous directions
thus leading to very efficient codes. In contrast to smooth-wall channels, at the same
Reynolds number Re, it is necessary to increase the number of points to describe
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Figure 1. Pressure distribution non-dimensionalized by ρU 2
c around a circular element, lines

are for the present DNS, symbols are for Furuya et al. (1976): , ×, w/k = 3; , �,
w/k = 7; · · · , ∗, w/k =15. The origin of θ is at the bottom wall, and it is oriented clockwise.

the contour of the body surface accurately. This method is optimal for solving flows
in channels where a mean pressure gradient is required to maintain a constant mass
flow rate. This mean pressure gradient is evaluated by integrating the streamwise
momentum equation.

A validation of the numerical procedure for treating roughness elements is provided
by a comparison with the experiment by Furuya et al. (1976). These authors studied
the boundary layer over two-dimensional circular rods, fixed to the wall transversely
to the flow, for several values of w/k (in this case w is the minimum distance
between two rods and k the diameter of the rods). Figure 1 shows that the pressure
distributions on the rods are in good agreement with measurements (Furuya et al.
1976). It is important to recall that the latter experiment was carried out in a boundary
layer at a larger Reynolds number. A first important inference can be drawn from the
agreement in figure 1. If the main interest is on the near-wall region, there appears
to be a similarity between boundary-layer and channel flows, as has previously been
established for a smooth surface. For a rough wall, the effect of the Reynolds number
is likely to be less critical than for a smooth wall, given that the flow is in the fully
rough regime and the major contribution to the wall shear is provided by the form
drag of the roughness elements.

This paper considers circular, square and triangular elements, which are either
aligned or placed transversely to the flow direction. For ease of identification, the
different shapes are denoted by capital letters, C for the smooth-wall channel, S for
square bars, R for circular rods and T for triangular elements. The orientation of
the elements is indicated by the subscript N for transverse and P for longitudinal
elements. The first number in the subscript is the first decimal of the magnitude of
k/h and the last is the value of w/k (e.g. R2N1 corresponds to k/h= 0.2 and w/k = 1).
Statistics for C, S2N7, S2N1, R2N1, T2N1, T2N0, S2P1, R2P1, T2P1, T2P0, T1P0 are considered.
A sketch of the different geometries is shown in figure 2, the origins for the different
coordinates used are also included. Although the main focus is on small values of
w/k, S2N7 has been included as a reference case because the roughness function is
maximum for this geometry (from Leonardi et al. 2003a).
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Figure 2. Geometrical sketch of the roughness surfaces considered (λ=w + k).

For each case, the initial condition is the flow field in a smooth-wall channel
at Re = 4200. Even for this latter simulation, the smooth lower wall is described
by the immersed boundary method. Two different computational boxes are used
for transverse and aligned disturbances. For transverse elements, the physical
dimensions in streamwise and spanwise directions are L1 = 8h and L3 = πh. The grid
is 400 × 160 × 128 in the streamwise (x1), normal (x2) and spanwise (x3) directions,
respectively. In the normal direction, 30 grid points, with an almost uniform spacing,
were used for the layer with roughness elements over the range −1.2 <x2 < − 1.
With 130 points non-uniformly distributed in the range −1 <x2 < 1, the first grid
point is located approximately 1 wall unit above the roughness crests. Along x1, each
roughness element is discretized using 10 points.

For the aligned disturbances, L1 is the same, but L3 is equal to 4h so as to have
an integer number of elements along x3. In the streamwise direction, 256 points
were used. In the spanwise direction, the number of points depends on the height
of the elements (only one case was done with triangles with w/k = 0 and k/h= 0.1).
The number of points per element was kept constant, equal to 10 and 30 in the x3

and x2 directions, respectively. Except for one simulation (k/h= 0.1 with a grid of
256 × 160 × 400), the grid was 256 × 160 × 200. In the following sections, results
are presented using normalization based on either wall variables (uτ , ν) or outer
variables (Uc, h). A ‘+’ is used in the former case; note that for a rough wall, uτ has
contributions from both the viscous and the form drag.

3. Mean velocity profiles
Averages have been performed with respect to x1 and x3 since our interest is not to

account for variations within one roughness wavelength, but to focus on the overall
effect the roughness has on the overlying flow. The velocity Ui can be expressed
as Ui = 〈Ui〉 + u′

i . Figure 3(a) shows that, for disturbances associated with transverse
elements, the mean velocity profiles are modified significantly, particularly in the outer
region. The maximum is shifted well away from the wall by an amount that depends
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Figure 3. Mean velocity profiles. (a) Transverse elements: , C; , S2N1; · · · , R2N1;
, T2N0; , T2N1; , S2N7. (b) Longitudinal elements; , C; , S2P1;

, R2P1; , T2P0; , T2P1; , T1P0.

on the intensity of the disturbance. The relatively large shift towards the outer wall
would suggest that the friction on the upper smooth wall increases. However, the
increase is not significant; the friction velocity (uτ )U is 0.0420 for the smooth wall,
and 0.0487 for S2N7 (the subscript U refers to the upper wall and uτ is normalized by
Uc). At this low Reynolds number, relatively large disturbances can propagate from
the lower rough wall to nearly the upper smooth wall. From the minor variations
of (uτ )U , we can infer that, in the near-wall region of a smooth-wall channel, the
mechanism of producing and sustaining turbulence is insensitive to relatively small
disturbances generated in the outer layer. Clearly, if the disturbances are very large,
for example those generated by large-eddy break-up (LEBU) devices, this conclusion
would not hold. These devices were studied to investigate the possibility of achieving
drag reduction.

The profiles in figure 3(b) reveal, on the contrary, large modifications in the region
close to the roughness. These are mainly due to the different amounts of area,
within the roughness crests plane, where U1 can differ from zero. The global effect
is equivalent to that obtained by translating the wall in the same direction as the
external flow; this motion reduces the velocity gradient at the wall and in the near-wall
region. The simulations of Perot & Moin (1995) and Orlandi & Leonardi (2001), as
well as the experiment by Uzkan & Reynolds (1967), indicated that this reduces the
production of turbulent energy and leads to a drag reduction. The difference between
the present longitudinal disturbances and the translating wall is that, in the former
case, there is a fluctuating Reynolds shear stress 〈u′

1u
′
2〉 which contributes to the wall

shear. Figure3(b) shows that the shift of the maximum towards the rough wall occurs
only for the drag reducing cases (viz. T2P0 and T1P0 for which (uτ )L is 0.0376 and
0.0370 respectively). The subscript L refers to the plane of the crests.

To analyse in more detail the influence of the slip condition, it is useful to plot the
profiles of the skin frictional drag. In figures 4(a) and 5(a), these are normalized with
the wall stress for the smooth wall to assess the variations produced by the roughness.
The semi-log format emphasizes the region close to the plane of the crests. Hereinafter,
y indicates the distance from the plane of the crests (y = 1 + x2, for x2 > − 1). This
sort of slip condition, for all cases except S2N1, reduces the velocity gradient at
y = 0 so that the viscous drag is smaller than for the smooth wall. Figure 5(a)
shows that when the height of the disturbance is small (k = 0.1), the slip velocity
is rather small and the velocity gradient is large, although smaller than for the
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normalized with τw|C , for parallel elements: , C; , S2P1; · · · , R2P1; , T2P0;
, T2P1; , T1P0.

smooth-wall channel. For triangles with k = 0.2 and w/k = 1, the slip velocity is large
and hence the viscous friction is rather small. As expected, figure 4(a) shows that, for
the transverse elements, the minimum viscous stress is obtained for S2N7, where the
relatively large separation between the elements produces a quite large 〈U1〉 at the
plane of the crests. To estimate the total drag over the rough wall, the Reynolds shear
stress should be added to the viscous stress. For transverse roughness, the Reynolds
shear stress is proportional to the form drag (Leonardi et al. 2003a), and figure 4(b)
shows that, if the disturbance is large (S2N7), the shear stress 〈u′

1u
′
2〉 can be four

times as large as the maximum shear stress for the smooth-wall channel. Despite the
reduction of the viscous stress for this case, (uτ )L reaches a value of 0.0897, i.e. more
than twice that of case C, where (uτ )L is 0.0423. Except for R2N1 and S2N1, the form
drag dominates the frictional drag. For triangular elements, the viscous stresses are
smaller than for the smooth wall, but the form drag is large.

For the flow-aligned elements, figure 5(a) shows that, at the same value of w/k, the
viscous contribution decreases as the area, without a solid surface, at the plane of the
crests increases. In this area, a quasi-free-slip condition applies. The opposite occurs
for the Reynolds shear stress (figure 5b), and, as a result, (uτ )L increases, (0.0463,
0.0452 and 0.0425 for S2P1, R2P1 and T2P1). These latter values do not differ appreciably
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Figure 6. Velocity profiles in wall units. (a) Transverse elements: , C; , S2N1;
· · · , R2N1; , T2N0; , T2N1; , S2N7. (b) Parallel elements: , C; ,
S2P1; · · · , R2P1; T2P0, , T2P1; , T1P0. In (a) the closed squares represent the
data of Kim et al. (1987) and the straight line is U+ = 1/0.41 ln(y+) + 5.5.

from the smooth-wall friction velocity value. On the other hand, for the triangles with
w/k = 0, drag reduction is achieved for T1P0, and this is obtained via a relatively
high viscous stress, though smaller than that for a smooth wall, and a small 〈u′

1u
′
2〉.

The resulting value of (uτ )L is 0.0370 which is comparable to (uτ )L = 0.0376 for T2P0.
Since the simulation T2P0 contradicts the results of Walsh (1990), the grid was refined.
A very coarse simulation with 129 × 101 points in x1 and x3, respectively, yielded
(uτ )U = 0.0585 and (uτ )L = 0.0440. A finer grid, (129×201) yielded (uτ )U = 0.0419 and
(uτ )L =0.0388. The values (uτ )U = 0.0402 and (uτ )L = 0.0370, obtained with the finest
grid, are expected to be grid independent.

In the near-wall region, figures 4(b) and 5(b) show that the Reynolds shear stress
〈u′

1u
′
2〉, in some of the cases and in particular those with large disturbances, is

approximately constant. This behaviour could help experimentalists to infer the
wall shear stress from values of 〈u′

1u
′
2〉 that are measured some distance from the

wall.
The effective origin for y in (1.1) is at a distance d0 from the roughness crests

plane; this ‘error in origin’, can be determined in several different ways. For example,
Jackson (1981) evaluated d0 as the centroid of the moment of forces around the
roughness element. In experiments, d0 is often calculated by assuming the validity
of the log-law with a value of 0.41 for the Kármán constant κ . To compare with
experiments, Leonardi et al. (2003a), also made this assumption. Here, d0 coincides
with the plane of the roughness crests (x2 = − 1). At this location, depending on the
type of disturbance, the mean velocity is U10 = 〈U1〉L �= 0. It follows that, relative to
this origin, the mean velocity, normalized by wall variables, is U+ = (〈U1〉−U10)/(uτ )L.
We recall that the friction velocity, (uτ )L, is given by the square root of the sum of the
skin frictional drag τf = (Re−1∂〈U1〉/∂y)L and the form drag whereas for a smooth
wall, only the skin friction contributes to uτ . On each side of the channel, 〈U1〉
is normalized by the appropriate uτ from the wall up to ymax , the location of the
maximum streamwise velocity. The profiles on the smooth-wall side of the channel
are not reported, but they overlap and differ only in terms of the extent of the log-law
region.

Figure 6 shows mean velocity profiles normalized by wall variables. The thick line
for the smooth-wall channel is given by U+ = (1/0.41) ln y+ + 5.5 and this agrees
reasonably well with the velocity profile at Rτ = uτh/ν = 180 by Kim, Moin & Moser



288 P. Orlandi, S. Leonardi and R. A. Antonia

 0

 5

 10

U +
1

 15

 20

 1  10
y+

 100

Figure 7. Velocity profiles in wall units without subtracting U+
10 as in Choi et al. (1993):

, C; , T2P0; , T1P0.

(1987); the small difference between the present results and those by Kim et al. (1987)
is probably caused by the width L3 of the channel, here assumed equal to π instead
of 2π. To evaluate the shift with respect to the smooth wall, a log-law, tangent to
each profile, can be evaluated with a value of 0.41 for κ . It can be appreciated that,
to a close approximation, a reasonable log-region appears in each case. The other
interesting outcome is that, at this low Re, by increasing the effect of the disturbance
(T2N0, T2N1, S2N7), the extent of the ‘wake’ region increases and a distinction between
viscous and buffer regions is no longer discernible. The tangent lines are not reported
in figure 6, but these were used to evaluate the roughness function. For flow-aligned
disturbances, a similar behaviour is observed, and it turns out that also for the drag
reducing geometries (T2P0,T1P0) there is a downward shift of the log-law, which seems
to contradict what Choi et al. (1993) observed. In that paper, the effect of the virtual
origin (y0) on the upward shift was investigated and when y0 coincided with the tip
of the riblets, the maximum shift was found. The downward shift can therefore be
attributed to the subtraction of U+

10. This quantity should in fact be added to obtain
U+

1 , as was done by Choi et al. (1993), and to show the upward shift for drag-reducing
riblets. The more conventional plot of figure 7 clearly shows that drag reduction is
achieved for T2P0 and T1P0. The two curves cross and although U+

10 is greater for T2P0

than T1P0, the drag reduction is smaller in the former case.
From the data in figure 6, the roughness function �U+ can be evaluated and

plotted versus w/k; the trend is the same as that of Furuya et al. (1976) for circular
rods, Krogstad & Antonia (1999) and Moore (1951) for square bars, and the DNS
results of Leonardi et al. (2003a). By plotting these data as a function of w/k it
appears that the shape of the geometry plays an important role for small w/k

and that the effect is reduced for w/k > 3. Whereas U+ is given by 〈U1〉/uτ in
experiments, here U+ = ((〈U1〉 − U10)/uτ )L, so that U+ is shifted downward by a
factor (U10/uτ )L. This procedure is not possible in the laboratory because U10 cannot
be easily measured; Leonardi et al. (2003a) followed the experimental procedure for
validating the simulations. This is why the present roughness function is larger than
that in Leonardi et al. (2003a) which was obtained with the same database.
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However, once a decision on how to normalize the profiles has been made, data
for different geometries do not collapse when w/k is varied. We can speculate that
even by choosing different geometrical parameters, for example the ratio between
solid and fluid spaces, a collapse is improbable. In particular, a collapse of the data
is impossible when the ratio between solid and empty spaces is approximately 1. This
applies typically to practical situations, such as flows over urban areas or flows in heat
exchangers. As mentioned previously, a parameter which relates to the flow statistics
should lead to a better collapse of the data. Indeed, figure 8 shows that, by plotting
the roughness function against (ũ2)L = 〈u′2

2 〉1/2
L (a tilde will be used to denote a r.m.s.

value), a better collapse of the data is achieved. This is consistent with the analysis
of Orlandi et al. (2003). In addition, figure 8 shows that the same scaling holds
for the longitudinal elements. This is a clear indication that the driving mechanism
of the near-wall vortical structures is related to the normal velocity fluctuations in
the plane of the crests. One could then design the disturbance so as to increase
(ũ2)L if the objective were to increase the drag. As pointed out by Belcher, Jerram
& Hunt (2003), geometrical parameters are not sufficient for classifying the large
variety of roughnesses. They claim that better modelling is needed, particularly for
the non-uniform regions in the vicinity of the roughness, in order to tackle practical
problems such as mesoscale numerical weather prediction and air quality forecasting
in urban areas and hilly terrains. The validity of this better parameterization is
limited, at the moment, to two-dimensional disturbances at low Reynolds numbers.
Simulations at high Reynolds numbers and with three-dimensional surfaces have not
yet been performed; the extension to three–dimensional roughness is currently being
pursued.

4. Turbulent stresses
As expected, turbulent intensities can differ significantly, depending on the type of

disturbance. For transverse elements, the roughness effects should penetrate further
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Figure 9. Turbulent intensities profiles: (a, b) streamwise, (c, d) normal, (e, f ) spanwise;
(a, c, e) transverse elements: , C; , S2N1; , R2N1; , T2N0; , T2N1;

, S2N7. (b, d, f ); longitudinal elements, , C; , S2P1; , R2P1; ,
T2P0; , T2P1; , T1P0.

into the flow. Both classes of disturbances are expected to affect profiles near
the roughness crests plane significantly. To emphasize differences between different
stresses, the same scale is used for the ordinates. The normalization is with respect to
Uc in order to highlight the large variations that occur. Figures 9(a) and 9(b) show
that ũ1 exhibits very large variations, for both kinds of disturbance, very near the
roughness crests plane. The difference is that, for transverse elements, the increase
is transferred to the outer region, while, for flow-aligned elements, the increase is
limited to the near-wall region. For transverse elements, fluctuations in u′

1 are related
to the strength of the recirculating region between elements. For instance, for square
bars, Leonardi et al. (2003a) showed that, for w/k = 7, this recirculation is similar
to the large intermittent recirculation region behind a backward-facing step, and
hence is capable of generating very large fluctuations at the interface. On the other
hand, for the flow-aligned elements, the fluctuations in u′

1 depend on the extent of
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the region associated with a quasi-free-slip condition for the streamwise velocity. For
T1P0, this layer is smaller than in the other cases and the profile resembles that of the
smooth-wall channel. The well-defined peak observed for this case is absent in other
geometries. With regard to the penetration of the disturbance, the profiles (not shown
here) near the opposite smooth wall, show that there is a slight increase of ũ1 for
S2N7. However, when the normalization is on wall variables, this increase is no longer
apparent and thus the profiles coincide with case C. This collapse further confirms
that, for smooth walls, there is a quasi-universal wall scaling, irrespective of any kind
of disturbance originating in the outer layer.

The penetration is related to the intensity of (ũ2)L which, according to figure 9(c),
increases systematically for the transverse elements. The increase is reduced for the
flow-aligned elements (figure 9d). The difference is related to the different nature of
the recirculation zone between the elements. For disturbances orthogonal to the flow,
there are separation and reattachment points, which, for w/k ≈ 1, are located near
the leading and trailing edges of the elements in the plane of the roughness crests.
As mentioned above, the nature of the recirculation region is different for S2N7. For
any kind of geometry, the recirculating regions are driven directly by the flow and
have the same sense of rotation in every cavity. For longitudinal disturbances, the
recirculating regions consist of secondary motions driven by the pressure difference
between the two walls; in each cavity, the direction of rotation can change. The
secondary motion is weaker than the recirculation associated with the transverse
roughness and, as a consequence, (ũ2)L is smaller. Further, by decreasing the height
of the elements and the width of the cavities, the strength of the secondary motion
decreases. This explains why the smallest ũ2 occurs for T1P0. The same considerations
hold for ũ3 (figure 9e, f ); as for ũ2, aligned disturbances with the same w/k (S2P1,
R2P1 T2P1) yield stresses which are larger than those of the smooth-wall channel, both
in the outer and near-wall regions.

For the smooth-wall channel, it is well known that ũ1 and ũ3 increase with y and
ũ2 with y2 in the limit y → 0. For elements with w/k � 1, the growth rate is reduced,
but is not negligible. On the other hand, ũ2 is almost constant in the layer very near
the roughness crests plane. As discussed previously, this could be important in the
laboratory to avoid making measurements very near the plane of the crests. Such
measurements are in fact, necessary to check whether the proposed new scaling for
the roughness function (figure 8) is valid at higher Reynolds-numbers, and it is well
recognized that the Reynolds-number dependence can be more easily demonstrated
by measurement than with the use of DNS data. In addition, figure 9(c) shows that,
when the disturbance is strong, ũ2 decreases more rapidly than for weak disturbances
far from the wall; this was explained by Leonardi et al. (2003b) through the transport
equation for the wall-normal Reynolds stress, the production rate of ũ2 diminishing
more rapidly for w/k = 7 than for w/k = 3. A similar reduction occurs for the other
two stresses, as shown in figure 9(a) and figure 9(e).

Leonardi et al. (2004) showed that the square bars enhance the isotropy of the
stresses; the streamwise turbulent intensity increases by a smaller amount than the
other two normal stresses. Here we extend this finding to triangular and circular
elements, with particular emphasis on small w/k. To quantify the effect that the
orientation of the elements has on the near–wall isotropy, the quantity qi = 〈u′2

i 〉/q2,
where q2 (≡ 〈u′2

1 〉 + 〈u′2
2 〉 + 〈u′2

3 〉) is twice the turbulent kinetic energy, has been
calculated at the first point close to the roughness crests plane. Figure 10 shows
that the improved isotropy is quite well correlated with (ũ2)L. For small (ũ2)L, the
difference between q1 and q2 is large, especially for the flow-aligned elements. For the
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Figure 10. Measure of anisotropy at the roughness crests plane. �, transverse elements;
�, flow-aligned elements. Solid symbols, q1; open symbols, q2.

largest (ũ2)L, which corresponds approximately to the maximum drag, the difference
between q1 and q2 is much reduced, consistent with an approach towards isotropy.
Since organized wall structures are characterized by a high level of anisotropy, we
can infer that a reduced organization leads to an increase in drag.

Root mean square turbulent intensities, normalized by wall variables, are shown in
figure 11. The relatively good agreement with the stresses of Kim et al. (1987) further
validates the present numerical method. In agreement with Bhaganagar et al. (2004),
the roughness reduces the near-wall maximum of ũ1

+
with respect to the smooth

wall. These authors considered a three-dimensional roughness which should produce
a large (ũ2)L; the peak value of ũ1

+
was approximately 1.5, in good agreement with

the present value for S2N7. The present results also show that the shape of the profiles
in the near-wall region depends on the geometry and, when the disturbance is very
strong, the peak almost disappears, regardless of which particular r.m.s. intensity is
considered. The increase in ũ2

+
and ũ3

+
implies that these r.m.s. intensities increase

more rapidly than (uτ )L. This is expected since the shape of the geometry affects
mainly u′

2 and u′
3 at the roughness crests plane. From these results, we can infer

that, for rough-wall flows, the velocity r.m.s. does not scale in the wall region with
the friction velocity. The r.m.s. profiles (not shown here) on the upper wall are not
affected up to y+ = 40 by the roughness on the bottom wall. This confirms that
turbulence in the near-wall region can be modified only by local disturbances or
by disturbances imposed at the wall itself. As mentioned earlier, we are referring
only to weak disturbances propagating from the outer layer towards the wall. The
profiles in figure 11(b, d, f ) have the same behaviour as in figure 9(b, d, f ) This is
expected because the friction velocities do not vary significantly among the different
flow-aligned elements.

The linear decay of the total stress characterizes fully developed channel and pipe
flows; this is also true for rough-wall channels, independently of the shape of the
elements. The establishment of a linear profile, not shown here, is a check that
the number of fields used for calculating the statistics is adequate. As is well known,
the Reynolds shear stress 〈u′

1u
′
2〉 converges much more slowly than the normal stresses.
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Figure 11. Turbulent intensities in wall units: (a, b) streamwise, (c, d) normal, (e, f ) spanwise;
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Relative to the geometrical centreline, the zero crossing point of the total stress
is shifted upwards for transverse elements and downwards for the drag-reducing
roughness T1P0 and T2P0. The shift increases as the disturbance increases. The zero
crossing point for 〈u′

1u
′
2〉 coincides with that for ∂〈U1〉/∂x2 for w/k = 0 and 1.

Leonardi, Orlandi & Antonia (2005) showed that this coincidence does not apply at
larger values of w/k.

Near a smooth wall, the viscous stress dominates over the turbulent stress. For
rough walls, the stresses can be of the same order depending on the geometry
of the roughness. The profiles of the two stresses given in figures 4 and 5 are
proportional to the quantities in the expression for the turbulent kinetic energy
production −〈u′

1u
′
2〉∂〈U1〉/∂x2. The large changes lead to a significant modification in

the turbulence production mechanism, as described in the following section.
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5. Turbulence production
In turbulent wall flows, the kinetic energy is produced mainly at y+ ≈ 10 and

then transferred towards the wall, where it is dissipated, and to the interior of the
channel. For smooth walls, the energy dissipation rate is essentially balanced by
viscous diffusion. Leonardi et al. (2003b) showed that the energy budgets for square
bars and circular rods are approximately the same for w/k =3 and w/k = 7. The
production is the biggest term across the wall layer and is balanced by the sum of
the dissipation rate and the turbulent diffusion. Since there are large modifications to
the production term, this term is analysed in more detail here. The expression for the
turbulent kinetic energy production can be decomposed as follows

P =

1︷ ︸︸ ︷
〈U1〉[〈u′

3ω
′
2〉 − 〈u′

2ω
′
3〉]

2︷ ︸︸ ︷
−∂〈U1〉〈u′

1u
′
2〉

∂x2

. (5.1)

The derivation of this equation which separates contributions from the active and
inactive motions, is given by Hinze (1975, p. 680). The inactive or irrotational motion
acts through the pressure field. A new pressure P can be defined as P = p+〈u′

iu
′
i〉/2.

The active motion is given by (5.1) where term 2, −∂〈U1〉〈u′
1u

′
2〉/∂x2, is a redistribution

term. For the smooth channel, it integrates to zero. Far from the wall, this term is
negative since energy is lost by the large scales, whereas near the wall, energy is
gained by the large scales. Term 1 is related to the transfer of energy between large
and small scales. Near the wall, energy is lost to the small scales (the sign of term 1
is negative) whereas, in the central region, it is gained from the small scales (the sign
of term 1 is positive). The difference between terms 1 and 2 in (5.1) represents the
turbulent energy production, which is positive everywhere. Far from the wall, the two
terms are in approximate balance.

Here, the interest is only in the active motion responsible for the Reynolds shear
stress; we speculate that, in order to achieve a drag increase and hence an increase
of turbulent energy production, the cross-product v′ × ω′ should increase. For drag
reduction, this product should decrease. Using the identity

|v′ × ω′|2 + |v′ · ω′|2 = |v′|2|ω′|2, (5.2)

a drag reducing flow should have a greater alignment between velocity and vorticity
vectors. An increase in v′ · ω′ was found by Orlandi (1997) in rotating pipes and
the relative drag reduction was explained through an increased organization of the
structures. Before examining how the roughness affects term 1 in (5.1), it is worth
showing how the contributions behave over a smooth wall. In figure 12, the rotational
term (which may be interpreted as a body force term) indicates whether the kinetic
energy is either transferred from large to small scales or gained by the large scales.
Near the wall, the kinetic energy resides at large scales, of the order of the distance
from the wall. Therefore the active motion indicates a transfer of energy to the
small scales. In the outer region, the energy containing scales are comparable to the
channel size and the rotational term indicates a transfer to large scales. Term 2
of of (5.1) is positive near the wall and greater than the rotational term. The net
outcome is a large positive production in the buffer layer. In the outer region, term
2 indicates that approximately the same amount of energy which is fed to the large
scales (characteristic of the outer layer) comes from the small scales. The net result
is a positive production, smaller than that in the buffer region, which tends to zero
near the centreline.
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Figure 13. Profiles of turbulent kinetic energy production. (a) Transverse elements: ,
C; , S2N1; , R2N1; , T2N0; , T2N1; , S2N7. (b) Longitudinal
elements , C; , S2P1; , R2P1; , T2P0; , T2P1; , T1P0.

A qualitative explanation for the effects of the roughness on the three normal
stresses, indicated in figure 9, can be inferred from the profiles of P (figure 13).
From the distributions in figure 9, it can be deduced that for the transverse elements,
〈q2〉 increases across the channel whereas, for longitudinal elements, the increase is
restricted to a thin layer close to the roughness crests plane. In the remainder of the
channel, 〈q2〉 is smaller than over a smooth wall. The profiles of P in figure 13 reflect to
a large extent the changes in 〈q2〉. A comparison between figure 13(a) and figure 13(b)
highlights that the increase in production near the roughness crests plane is
smaller for longitudinal than for transverse elements. For longitudinal elements, the
production is reduced at a distance from the wall which corresponds to the maximum
production over a smooth wall. The inference is that the energy-containing eddies
are smaller near longitudinal elements. For the drag-reducing cases, it seems that the
production is reduced because the near-wall vortical structures are more organized.
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Figure 14. Profiles of the rotational energy production (term 1 in (5.1)). (a) Transverse
elements: , C; , S2N1; , R2N1; , T2N0; , T2N1; , S2N7.
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The increased organization is also related to the fact that the motion is constrained
along the spanwise direction. This is seen clearly in flow visualizations (not presented
here).

Near the roughness elements, the profile of term 1 in (5.1) is strongly affected by
the roughness geometry and the direction of the energy transfer can change sign. The
semi-log plot in figure 14 highlights that, for the geometries (S2N7) which produce a
large (ũ2)L, the rotational term changes sign in the near-wall region, and thus energy
is transferred from small to large scales. This seems reasonable, since, for S2N7, for
example, there are strong ejections outward from the roughness canopy which interact
with the incoming large turbulent structures. For the other geometries, on the other
hand, the shift towards the wall and the increase of the negative peak imply the
increased formation of smaller scales by comparison to the smooth wall. This is the
first indication that the elongated structures near a smooth wall tend to disappear.
For the longitudinal elements, only for T2P1 is there a large reduction; this can be
appreciated from visualizations of velocity and vorticity components which feature in
the rotational production term. This reduction can be better quantified, through the
JPDF, to be discussed later. Profiles of the rotational term show that the flow-aligned
elements (figure 14b) affect the rotational production less than the transverse elements
(figure 14a). Figure 14(a) further shows that for the transverse elements, the positive
transfer increases with the disturbance in the outer region. Also, an increase in the
magnitude of term 2 in (5.1) is expected because the production must be zero at
the crossing point, where 〈u′

1u
′
2〉 and ∂〈U1〉/∂x2 are zero. Figure 13(a) shows that,

in the outer region, P increases with the disturbance owing to a dominance of the
rotational production. The final result is that the stresses are larger in the outer region
(figure 11a, c, e). For the flow-aligned disturbances (figure 14b), this does not occur
and hence the magnitudes of the stresses do not differ from case C (figure 11b, d, f ).

With respect to the near-wall region, it is worth understanding which of the two
products, contributing to term 1 in (5.1), is responsible for the change of sign in fig-
ure 14(a) for S2N7 and why there is a large reduction in T2P1 (figure 14b). Figure 15(a, b)
shows that, in the near-wall region, 〈u′

3ω
′
2〉 does not change sign and its magnitude

changes in a way that does not simply depend on (ũ′
2)L. Also the correlation 〈u′

3ω
′
2〉

is similar for S2N1 and S2N7. Figure 15(b) shows slightly more complex variations for
the flow-aligned elements.
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The changes in −〈u′
2ω

′
3〉 (figure 16) are more complicated. Near the wall, the change

of sign is mainly responsible for the change of sign of term 1. For the flow-aligned
elements, the sign of this quantity is different in the near-wall region from that for
the smooth-wall channel, reducing the amount of energy lost by 〈u′

3ω
′
2〉. This effect

occurs to a large degree for T2P1, where the rotational energy production is small and
does not show a well-defined peak at a small distance from the wall (figure 15b). The
reasons for the changes of these correlations can be better understood through the
JPDF. The latter reflects modifications to turbulence structures and is appropriate for
discerning changes to velocity–vorticity correlations.

Through the JPDF, it is possible to obtain statistics of any order and, in particular,
the correlation coefficients. The JPDF P (σ1, σ2), where σi = σ ′

i /σ̃i , is such that∫
P (σi, σj )dσidσj = 1. The correlation coefficient between σi and σj is given by

〈σ ′
i σ

′
j 〉

σ̃i σ̃j

=

∫∫
σi, σjP (σi, σj )dσidσj . (5.3)

The correlation coefficient for the velocity–vorticity tensor, Λij , is defined by

Λij =
〈u′

iω
′
j 〉

ũi ω̃j

. (5.4)



298 P. Orlandi, S. Leonardi and R. A. Antonia

–0.4

–0.2Λ32

 0

 0.01  0.10
y y

 1.00

(a) (b)

–0.4

–0.2

 0

 0.01  0.10  1.00

Figure 17. Profiles of velocity–vorticity correlation coefficients Λ32. (a) Transverse elements:
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symbols indicates the cases investigated through the JPDF.

–0.4

–0.2

 0

 0.2

(a) (b)

 0.01  0.10
y y

 1.00
–0.4

–0.2

 0

 0.2

 0.01  0.10  1.00

–Λ23

Figure 18. Profiles of correlation coefficients −Λ23. (a) Transverse elements: , C;
, S2N1; �, R2N1; , T2N0; �, T2N1; , S2N7. (b) Longitudinal elements: ,

C; , S2P1; , R2P1; , T2P0; �, T2P1; , T1P0. Closed symbols indicates
the cases investigated through the JPDF.

Profiles of the correlation coefficients differ from those for one-point correlations,
but for any particular value of y, it is possible to understand via the JPDF which
kind of event contributes most to 〈u′

iω
′
j 〉. The JPDFs corresponding to S2N1, T2N1,

T2P1, (indicated by solid symbols in figures 17–19), are compared with the JPDF
for the smooth-wall channel. In addition, it should be noted that −Λ23 is plotted
in figure 18, the magnitude of this quantity having been obtained by summing the
contributions from the quadrants. The JPDFs have been evaluated at y =0.02. To
show that the physics associated with the rotational energy production is complex
and is affected significantly by the shape and orientation of the roughness elements,
profiles of Λ32 (figure 17) and −Λ23 (figure 18) are compared with those of R12 in
figure 19. The latter correlation coefficients are linked to the formation of low- and
high-speed streaks. This comparison shows that, although there are minor differences
in the near-wall layer, R12 is not too affected by the roughness.

From the JPDF, the integrand in (5.3) can be evaluated, thus allowing the
contribution from each quadrant to be quantified. In this section, a prime indicates
the ratio of the fluctuation to its r.m.s. value. To understand the production
mechanism and its relationship to low- and high-speed streaks, the integrand for Λ23
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Figure 19. Profiles of correlation coefficients R12. (a) Transverse elements: , C; ,
S2N1; �, R2N1; , T2N0; �, T2N1; , S2N7. (b) Longitudinal elements: , C;

, S2P1; , R2P1; , T2P0; �, T2P1; , T1P0. Closed symbols indicates the
cases investigated through the JPDF.

is shown in figure 20(b, e, h, m) and for R12 in figure 20(c, f, i, n). For a smooth wall
(figure 20b) when 〈u′

2ω
′
3〉 > 0, the first and third quadrants dominate the other two,

and hence contribute to the rotational energy production (figure 16). These quadrants
correspond to the ejection u′

2 > 0 and sweep u′
2 < 0 events. The ejections produce

low-speed streaks (u′
1 < 0 and ω′

3 > 0) whereas sweeps produce high-speed streaks.
Figure 20(c) shows that the sweeps (fourth quadrant) are the events contributing most
to the Reynolds shear stress 〈u′

1u
′
2〉 and hence to the rotational production (third quad-

rant figure 20b). For the smooth-wall channel, Λ23 is relatively high (0.38) at y = 0.02.
The contributions from quadrants I to IV are 0.176, −0.052, 0.326 and −0.067.

For S2N1, P (u′
2, ω

′
3) shows that the weak recirculation region increases the number of

locations where u′
2 ≈ 0. The few events with large positive and negative u′

2 correspond
to the vertical walls. Figure 20(e) shows that the JPDF becomes more symmetric
about u′

2 = 0 and this implies a decrease in Λ23 (0.2365). For S2N1, the contribution
from the first quadrant (0.227) is significantly larger than that from the other three
(−0.096, 0.180, −0.075). Figure 20(e) shows that ω′

3 becomes negatively skewed. The
negative value is related to ∂u2/∂x1, produced by the vertical walls of the square
bars, rather than by ∂u1/∂x2. For S2N1, R12 is −0.45 which is close to the smooth-wall
channel value (−0.38). Figure 20(f ) indicates that the second and fourth quadrants are
the major contributors to the correlation coefficient. The minor differences between
the JPDF for the smooth wall and S2N1 imply that the low- and high-speed streaks
are modified slightly. This is supported by Leonardi et al.’s (2004) two-point velocity
correlations.

For geometries generating very strong disturbances (T2N1), figure 20(h) shows
that ω′

3 is more negatively skewed, and that the contributions from the second
and fourth quadrants increase (0.189, −0.189, 0.100, −0.151), leading to a negative
Λ23. From these values, it appears that the strong sweep and ejection events
occurring near the trailing and leading edges of the triangular cavity balance each
other and the contribution to the low negative rotational energy production term
arises from the difference between the fourth and third quadrants. Even for T2N1,
the correlation R12 does not change appreciably (figure 20i with contributions
0.0763, −0.246, 0.036, −0.373). The negative trend for the integrand of Λ23 is
enhanced for T2P1; in figure 20(m), the contribution of the fourth quadrant increases
and that of the first and third decrease; the values are 0.141, −0.189, 0.082, −0.175.
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Figure 20. Contours of the integrands corresponding to the correlation coefficients: Λ32

(a, d, g, l), Λ23 (b, e, h,m), R12 (c, f, i, n). Smooth channel (a, b, c), S2N1 (d, e, f ), T2N1 (g, h, i),
T2P1 (l, m, n). In a, d, g and l, the abscissa is u′

3 and the ordinate is ω′
2. In b, e, h and m, the

abscissa is u′
2 and the ordinate is ω′

3. In c, f, i and n, the abscissa is u′
1 and the ordinate is u′

2.

The ejections due to the secondary motion inside the triangular riblets, which occur
mainly near the sidewalls, contribute less. The sweeps, located mainly in the central
region between the apexes of the triangles, contribute to reducing the turbulent
kinetic energy production, as discussed in connection with figures 13 and 14. It
follows that the inverse energy cascade from small to large scales is associated with
the increased contributions from the second and fourth quadrants. We therefore infer
that the inverse energy cascade, caused by the increased intensity of the disturbances
(transverse elements), is associated with the second quadrant, i.e. to the events induced
by the recirculating region near the reattachment point.
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The other contribution to the 〈u′
3ω

′
2〉U1 (figure 17) does not change sign near the

wall when the shape and orientation of the elements is changed. Λ32 decreases when
the disturbance is increased, in particular for the transverse elements (figure 17a);
hence, events contributing to this correlation should be similar. For the cases
considered previously, the integrands of (5.3) for Λ32 are shown in figures 20(a, d, g, l).
In the absence of disturbances, the second and fourth quadrants contribute most to
Λ32 (figure 20a). When disturbances are present, the contribution from the other two
quadrants increases. For the smooth-wall channel, the second and fourth quadrants
are related to the streaks. The formation of ∂u1/∂x3 can be explained by a two-
dimensional model, where u1 is convected by ω1 (Orlandi & Jiménez 1995). A very
high (u′

2) disturbance is most probably related to the splashing event, described
by Leonardi et al. (2004). The leading edge of a roughness element generates a
negative ∂u1/∂x1, associated with a positive ∂u3/∂x3. This motion is not organized
and promotes the formation of ∂u1/∂x3 of opposite sign to u′

3, the global effect
being an improvement in isotropy in the vicinity of the roughness. To understand the
difference in Λ32 between T2N1 and T2P1, we report the contributions from the four
quadrants: (0.110, −0.207, 0.110, −0.206) for T2N1 and (0.106, −0.178, 0.108, −0.178)
for T2P1; i.e. the same value is obtained by a reduction of all the quadrants. From
figures 20(g) and 20(l), it can be inferred that the PDF of u′

3 does not change and
that ω′

2 is more intermittent for T2N1 than T2P1.
The effect on isotropy in the near-wall region, can be further corroborated by

analyzing the helicity density, defined by

h′ =
v′ · ω′√
|v′|2|ω′|2

. (5.5)

An increase of energy transfer v′ × ω′ corresponds to a decrease in the helicity density.
Since the roughness considered here cannot break the symmetry, the total helicity
should remain equal to zero, as found by Rogers & Moin (1987) for a channel flow
and Orlandi (1997) for a pipe flow. To Analyse the alignment between vorticity and
velocity in different regions of the channel, the PDF of the helicity density can be used.
In previous studies, it was found that, in the near-wall region, the probability that h′

is zero is large. Near the centre of the channel, where the turbulence is more isotropic
(e.g. Kim & Antonia 1993), there is an equal probability of alignment. The PDF is
symmetrical in both regions and the equipartition of the probabilities is characteristic
of disordered structures. It should be kept in mind that, in this paper, the interest is
in the energy-containing scales. The PDF of the so-called ‘worms’ studied by Jiménez
et al. (1993) in isotropic turbulence should be different. These small structures are
outside the scope of this paper.

The above arguments suggest that profiles of total helicity, averaged in the
homogeneous directions, do not have any physical interest. Instead, the PDF of h′ can
vary across the channel and may depend on the geometry of the roughness. For the
cases discussed previously, the PDFs have been evaluated at two distances from the
wall, always in the near-wall region. Figure 21(a) shows that at y = 0.02 (corresponding
to y+ =3.5 for a smooth-wall channel), the large probability of having orthogonal
velocity and vorticity vectors is reduced when the disturbance increases. A distribution
close to that for isotropic turbulence is reached when the disturbances are sufficiently
strong (R2N1, T2N1 and S2N7). It is worth recalling that, in a smooth-wall channel,
ω′

3 is the largest vorticity component near the wall and u′
1 is larger than the other

two components. This explains the poor alignment. Figure 21(b) shows that for the
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Figure 21. Probability density function of the helicity density for transverse elements (a)
y = 0.02, (b) y = 0.09. , C; , S2N1; , R2N1; , T2N0; , T2N1; ,
S2N7.
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Figure 22. Probability density function of the helicity density for longitudinal elements (a)
y = 0.02, (b) y = 0.09. , C; , S2P1; , R2P1; , T2P0; , T2P1; ,
T1P0.

smooth-wall channel at y+ = 16, the lack of alignment persists, but is reduced in
magnitude and, for all the transverse elements, a state close to isotropy is reached.
This is a further check that the roughness produces a near-wall layer where quantities
do not vary significantly with distance from the wall. For the flow-aligned elements,
the tendency towards isotropy is reduced (figure 22a, b), and for the drag-reducing
geometries, the probability of having velocity and vorticity components which are or-
thogonal increases and persists for greater distances above the roughness crests plane.

6. Concluding discussion
A low-Reynolds-number database has been used to understand some aspects of

the flow in the vicinity of roughness elements. The study is not exhaustive since
three-dimensional roughnesses have not been considered. The mean velocity profiles,
normalized by wall variables, were estimated relative to reference quantities in the
roughness crests plane. This is possible only in numerical simulations since all
quantities can be evaluated in this plane. No satisfactory correlation could be found
between �U+ and the geometrical parameters of the roughness. However, it was
observed that the r.m.s. wall-normal velocity is the quantity which best characterizes
the rough-wall flows that were considered. This characterization has more general
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validity than any other based solely on geometrical parameters. Although the
correlation between �U+ and (ũ2)L is gratifying, more work is required to demonstrate
that this correlation can be extended to industrial and geophysical flows. Orlandi et al.
(2003) provided partial evidence for this by showing that the characteristics of rough-
wall flows were reproduced by simulations of smooth-wall flows after imposing an
instantaneous U2 distribution, taken from the rough-wall DNS database of Leonardi
et al. (2003a), as a boundary condition. Further evidence may be gathered by imposing
a distribution with the same (ũ2)L and random phases across the virtual cavities. If
satisfactory results are achieved, it may then be claimed that this constitutes a more
general and reliable way of parameterizing the roughness than via �U+. The final step
could consist in establishing a correspondence between certain kinds of roughness
and (ũ2)L. Previously, the focus has been on determining an appropriate length scale
which can account for different types of terrain. The present proposal is more physical,
given that almost any code developed for real applications incorporates a turbulence
model where (ũ2)L can be prescribed as a boundary condition.

Previously, the interest in rough-wall flows has focused mainly on high Reynolds
numbers and the possible interrelationship between inner and outer layers. Jiménez
(2004) concludes that DNS data cannot yet shed any light on either of these aspects.
The issue of how the inner and outer layers interact at high Reynolds numbers remains
open, and there appears to be some disagreement among different experiments with
regard to how much influence the roughness exerts on the outer region. Leaving aside
this issue, we nevertheless believe it is worth investigating how the near-wall region
is affected by the shape of the roughness elements. In particular, we have focused on
roughness elements with relatively small separations in the streamwise direction, for
which the dependence of the roughness function on the roughness geometry is more
critical than at large separations.

Even for weak disturbances, we have found that the near-wall behaviour differs
from that over a smooth wall. The present DNS data may assist the experimentalist
with how to extrapolate measured distributions of 〈u′

1u
′
2〉 and 〈u′2

2 〉 to the roughness
crests plane. Such measurements would help to establish whether the parameterization
based on (ũ2)L could be extended to high Reynolds numbers and to boundary-layer
flows. It is certainly of interest that the new parameterization also applies to drag-
reducing roughness geometries.

To understand why the disturbance penetrates further for transverse than
longitudinal elements, vortical structures have been analysed by evaluating the
rotational component of the turbulent kinetic energy production, associated with
v′ ×ω′. The JPDFs of the correlation coefficients between v and ω yield useful insight
into the inverse energy cascade and the events responsible for this change of sign.
Strong support for the tendency towards isotropy near the wall, its connection to drag
augmentation and its dependence on the disturbance was provided by the rotational
component of the turbulent kinetic energy production and the PDF of the helicity
density.
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